1887

Abstract

A novel Gram-staining-positive actinobacterium with antimicrobial activity, designated CFH 90308, was isolated from the sediment of a salt lake in Yuncheng, Shanxi, south-western China. The isolate exhibited the highest 16S rRNA gene sequence similarities to G72, NBRC 15708 and S3-E (98.5, 98.4 and 98.2 %, respectively), and formed a separate clade with S3-E in phylogenetic trees. The strain grew at 15–40 ºC, pH 6.0–8.0 and could tolerate NaCl up to a concentration of 15 % (w/v). The whole genome of strain CFH 90308 consisted of 4.33 Mbp and the DNA G+C content was 69.6 mol%. The acyl type of the peptidoglycan was glycolyl and the whole-cell sugars were galactose and mannose. The cell-wall peptidoglycan mainly contained alanine, glycine and lysine. The menaquinones of strain CFH 90308 were MK-12, MK-13 and MK-11. Strain CFH 90308 contained anteiso-C, anteiso-C, iso-C and iso-C as the predominant fatty acids. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between CFH 90308 and the other species of the genus were found to be low (ANIb <81.3 %, dDDH <25.6 %). The secondary metabolite produced by strain CFH 90308 showed antibacterial activities against , , and methicillin-resistant . Based on genotypic, phenotypic and chemotaxonomic results, the isolate is considered to represent a novel species of the genus , for which the name sp. nov is proposed. The type strain is CFH 90308 (=DSM 105964=KCTC 49052).

Funding
This study was supported by the:
  • Key Technologies R&D Program of Henan Province (Award 232102311146)
    • Principle Award Recipient: CaixiaCui
  • Doctor Scientific Research Fund of Xinxiang Medical University (Award XYBSKYZZ201625)
    • Principle Award Recipient: HongMing
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006362
2024-05-02
2024-05-18
Loading full text...

Full text loading...

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Copenhagen: Høst & Sons; 1919
    [Google Scholar]
  2. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and "Corynebacterium laevaniformans" (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 1983; 4:65–78 [View Article]
    [Google Scholar]
  3. Takeuchi M, Hatano K. Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 1998; 48 Pt 3:739–747 [View Article] [PubMed]
    [Google Scholar]
  4. Krishnamurthi S, Bhattacharya A, Schumann P, Dastager SG, Tang S-K et al. Microbacterium immunditiarum sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2012; 62:2187–2193 [View Article] [PubMed]
    [Google Scholar]
  5. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 2014; 37:474–479 [View Article] [PubMed]
    [Google Scholar]
  6. Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A. Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2016; 66:4492–4500 [View Article] [PubMed]
    [Google Scholar]
  7. Imai K, Takeuchi M, Banno I. Reclassification of “Flavobacterium arborescens” (Frankland and Frankland) Bergey et al. in the genus Microbacterium (Orla-Jensen) Collins et al., as Microbacterium arborescens comb. nov., nom. rev. Curr Microbiol 1984; 11:281–284 [View Article]
    [Google Scholar]
  8. Suzuki K, Hamada M et al. Genus I. Microbacterium Orla-Jensen 1919, 179AL emend. Takeuchi and Hatano 1998, 744 VP. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. eds Bergey’s Manual of Systematic Bacteriology vol 5 New York: Springer; 2012 pp 814–852
    [Google Scholar]
  9. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 2014; 37:474–479 [View Article] [PubMed]
    [Google Scholar]
  10. Kook M, Son H-M, Ngo HTT, Yi T-H. Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 2014; 64:851–857 [View Article] [PubMed]
    [Google Scholar]
  11. Torkko P, Suomalainen S, Iivanainen E, Suutari M, Tortoli E et al. Mycobacterium xenopi and related organisms isolated from stream waters in Finland and description of Mycobacterium botniense sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:283–289 [View Article] [PubMed]
    [Google Scholar]
  12. Wu Y-H, Wu M, Wang C-S, Wang X-G, Yang J-Y et al. Microbacterium profundi sp. nov., isolated from deep-sea sediment of polymetallic nodule environments. Int J Syst Evol Microbiol 2008; 58:2930–2934 [View Article] [PubMed]
    [Google Scholar]
  13. Gao J-L, Sun P, Wang X-M, Lv F-Y, Sun J-G. Microbacterium zeae sp. nov., an endophytic bacterium isolated from maize stem. Antonie van Leeuwenhoek 2017; 110:697–704 [View Article] [PubMed]
    [Google Scholar]
  14. Clermont D, Diard S, Bouchier C, Vivier C, Bimet F et al. Microbacterium binotii sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2009; 59:1016–1022 [View Article] [PubMed]
    [Google Scholar]
  15. Kim KK, Park HY, Park W, Kim IS, Lee S-T. Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 2005; 55:2075–2079 [View Article]
    [Google Scholar]
  16. Thys RCS, Lucas FS, Riffel A, Heeb P, Brandelli A. Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol 2004; 39:181–186 [View Article] [PubMed]
    [Google Scholar]
  17. Pattanapipitpaisal P, Brown NL, Macaskie LE. Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 2001; 23:61–65 [View Article]
    [Google Scholar]
  18. Chunming W, Dapingamp LI, Chunlian W et al. Biodegradation of naphthalene, phenanthrene, anthracene and pyrene by Microbacterium sp.3-28. Chin J Appl Environ Biol 2009; 15.03:361–366 [View Article]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  20. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 2013; 104:1205–1215 [View Article] [PubMed]
    [Google Scholar]
  21. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  22. Yang Z-W, Salam N, Hua Z-S, Liu B-B, Han M-X et al. Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 2017; 67:4862–4867 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  31. Zhou H-W, Li D-F, Tam NF-Y, Jiang X-T, Zhang H et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 2011; 5:741–749 [View Article]
    [Google Scholar]
  32. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  33. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  34. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  36. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  37. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. IntJ Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  38. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  39. Waksman SA. The Actinomycetes. In A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  40. Ming H, Yin Y-R, Li S, Nie G-X, Yu T-T et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [View Article] [PubMed]
    [Google Scholar]
  41. Atlas RM. Handbook of Microbiological Media. L. C. Parks ed Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  42. Cerny G. Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:113–122 [View Article]
    [Google Scholar]
  43. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article] [PubMed]
    [Google Scholar]
  44. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. eds Bergey’s Manual of Systematic Bacteriology Baltimore: Williams & Wilkins; 1989 pp 2452–2492
    [Google Scholar]
  45. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article] [PubMed]
    [Google Scholar]
  46. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  47. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E et al. Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 2004; 54:2121–2129 [View Article] [PubMed]
    [Google Scholar]
  48. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd. edn Cambridge University Press; 1993 pp 1–331
    [Google Scholar]
  49. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  50. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  51. Tamaoka J, Katayama‐Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  52. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  53. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  54. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  55. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  56. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  57. Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C et al. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 2011; 74:670–674 [View Article] [PubMed]
    [Google Scholar]
  58. Shah AM, Shakeel UR, Hussain A, Mushtaq S, Rather MA et al. Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microb Pathog 2017; 110:93–99 [View Article] [PubMed]
    [Google Scholar]
  59. Sengupta S, Pramanik A, Ghosh A, Bhattacharyya M. Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol 2015; 15:170 [View Article] [PubMed]
    [Google Scholar]
  60. Keusgen M. TLC analysis of Allium sativum constituents. Planta Med 1997; 63:93–94 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006362
Loading
/content/journal/ijsem/10.1099/ijsem.0.006362
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error